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We have studied the interplay of valley polarization and the Coulomb interaction on the energy spectrum,
persistent current, and optical absorption of a graphene quantum ring. We show that the interaction has a
dramatic effect on the nature of the ground state as a function of the magnetic flux and that the absence of
exchange interaction between electrons in opposite valleys means that the singlet-triplet degeneracy is not
lifted for certain few-electron states. The additional energy-level crossings �fractional flux periodicity� due to
the interaction directly lead to extra steps in the persistent current and intricate structures in the absorption
spectrum that should be experimentally observable. By varying the width of the ring, the nature of the ground
state at zero field can be varied and this is manifest in the measurable properties we discuss.
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Graphene �a single layer of carbon atoms arranged in a
honeycomb lattice� with its unusual electronic properties has
claimed the center stage of condensed-matter research for the
past three years.1 Theoretically investigated sixty years ago,2

interest in this system widened after free-standing graphene
flakes were obtained experimentally by Geim et al.3 in 2004.
The linear band structure predicted for this material has been
verified, and several striking experimental observations have
been made, including the “half-integer” quantum Hall effect
and a solid-state manifestation of the Klein paradox for
massless Dirac fermions.

In neutral bulk graphene, the Fermi energy is located at
the two inequivalent K points, and the corresponding pairs of
single-particle eigenstates in each of these “valleys” are de-
generate with each other. An experimental observation4 of
lifting of this valley degeneracy in high-field quantum Hall
effect measurements has prompted several theoretical studies
seeking the origin of this valley polarization.5 The intriguing
possibility of controlling the energy difference between elec-
tron states in opposite valleys which would facilitate the idea
of valleytronics �utilizing the valley quantum number to con-
trol the system� would be an exciting development.

Quantum rings of nanoscale dimensions are known to
carry a persistent current: an equilibrium current driven by
the magnetic field threading the ring.6 This is a direct conse-
quence of the Aharonov-Bohm �AB� effect7 which manifests
itself as periodic oscillations in the energy spectrum of the
electronic system as a function of the number of flux quanta
threading the ring.8 Impressive progress in fabricating nano-
size quantum rings containing only a few electrons has led to
equally notable results on the observation of the properties of
energy spectra, first noticed in Ref. 8, via magnetoabsorption
spectroscopy9 and in magnetotransport measurements.10 The
important role of the electron-electron interaction in this sys-
tem was found to lift the degeneracy between states with
different spin as a means to gain the exchange energy.11 A
direct consequence of this is the fractional flux periodicity
that was indeed observed in subsequent experiments on
semiconductor quantum rings containing only about four
electrons.12

Graphene rings have recently been fabricated and AB os-
cillations were observed in their conductance.13 The com-

bined effect of the ring confinement and applied magnetic
flux is suggested theoretically to lift the orbital degeneracy
arising from the two valleys in a controllable way.14 Further,
a ring with quantum point contacts has been shown to polar-
ize the transport current with respect to the valley.15 The
important effects of the Coulomb interaction on the valley
degeneracy and ground-state properties have not yet been
investigated.

In this work, we report on the effect of the Coulomb in-
teraction on the energy spectrum, persistent current, and
optical-absorption spectrum of a graphene quantum ring. We
show that the interaction, the total valley quantum number,
and the spin will dramatically change the nature of the
ground state of a few-electron system. We find that the inter-
action causes drastic changes in the nature of the ground
state as the flux varies and that the absence of the exchange
interaction for electrons in opposite valleys means that the
singlet-triplet degeneracy is not lifted for some states. The
extra crossings in the spectrum which are generated by the
interaction manifest themselves as steps appearing in the per-
sistent current �the fractional AB effect� and results in intri-
cate structures in the absorption spectrum. These effects are
all experimentally measurable. Details of the periods of the
oscillations of the persistent current depend on the width of
the ring and hence the interplay between kinetic and Cou-
lomb energies.

We use the valley symmetric form of the graphene
Hamiltonian14

H = �0 � H0 + �z � �zV�r� , �1�

where V�r� is a mass term which describes the confinement
of the electron, H0=�F�p� ·�� � is the bulk graphene Hamil-
tonian, �x,y,z,0 and �x,y,z,0 are Pauli matrices in the sublattice

and valley spaces, respectively, p� =−i��� +eA� , and �F is the

Fermi velocity. The vector potential is taken as A�

= �� /2�r�e��, where � is the total magnetic flux threading
the ring. The index N stands for the pair of quantum numbers
�m ,��, where m is the orbital angular momentum and �
= +1�−1� in the K �K�� valley. The single-electron wave
function 	N�
� for a ring of width W and radius R �see Fig.
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2�c�� written in terms of the dimensionless radial coordinate

=r /W is

	N�
� = ei„m−�1/2�…�bN� fN���N�
�
i sgn��N�ei�gN���N�
� � , �2�

where

fN = �NHm̄−�1/2�
�1� ���N�
� + Hm̄−�1/2�

�2� ���N�
� ,

gN = �NHm̄+�1/2�
�1� ���N�
� + Hm̄+�1/2�

�2� ���N�
� ,

�N = −
Hm̄−�1/2�

�2� ���N�
−� + � sgn��N�Hm̄+�1/2�
�2� ���N�
−�

Hm̄−�1/2�
�1� ���N�
−� + � sgn��N�Hm̄+�1/2�

�1� ���N�
−�

with 
= R
W 

1
2 , m̄=m+ �

�0
, bN is the normalization factor,

and sgn�x�=1 for x�0 and sgn�x�=−1 for x�0. The func-
tions H�

�1��x� and H�
�2��x� are, respectively, Hankel functions

of the first and second kinds.
The ring confinement used to derive Eq. �2� is defined by

the mass term �written as the potential V�r�� in the Hamil-
tonian. We employ infinite mass boundary conditions14,16 so
that V�r�→� outside the ring. This yields the boundary con-
dition 	�
�=��n� ·�� �	�
�. The coefficient �N is found by
applying this condition at the inside edge, an eigenvalue
equation for �N is derived by subsequently imposing the
boundary condition at the outside edge, and bN is calculated
numerically for each state and value of the flux via the nor-
malization condition for the wave function.

The interacting few-electron system is studied by adding
the term

C =
1

2�
i�j

e2

4��g

1

�r�i − r� j�
�3�

to the Hamiltonian where �g is the dielectric constant of
monolayer graphene. This form allows direct interaction be-
tween all electrons, but the exchange part is present only
between electrons in the same valley and with the same spin
as each other. There are no singularities in the matrix ele-
ments of this interaction since the band structure of the wave
functions introduces a cutoff at small distances, which we
take into account only if the corresponding matrix element
diverges. The simple matrix structure of this operator is un-
changed by the transformation to the valley-symmetric form.
We evaluate �numerically� the matrix elements of this opera-
tor over the single-particle wave functions in Eq. �2�. Using
these single-particle matrix elements, we construct the many-
body Hamiltonian and carry out an exact diagonalization
procedure to determine the energy and eigenstates of the in-
teracting system. The persistent current j is then calculated
by taking the derivative of the ground-state energy E0 of the
few-electron system with respect to the flux as j���= �

��E0.

To describe the absorption of incident light by the
graphene ring we add a term to the Hamiltonian which de-
scribes the coupling of electrons to the field via the vector

potential A� EM=2A0�� cos�k� ·r�−�t�. We assume that the radia-
tion propagates as a plane wave with wave vector k�, fre-
quency �, and polarization described by the unit vector �� .
Then, the Hamiltonian can be written as

H = �F�� · �p� + eA� B + eA� EM� + �V�r��z + C �4�

in the valley-symmetric representation. The transition rate
from state N to state N� is calculated from

wN�N � �	N���x�x + �y�y�N
�2 = 4�2�IN�N�2, �5�

with

IN�N = �

−


+


 d
 bN�
� bN����,K��,K + ���,K���,K����m�,m+1��x

− i�y�fN�
� gN − �m�,m−1��x + i�y�gN�

� fN� �6�

in the dipole approximation. The integral �where we drop the
coordinate dependence of the spatial functions for brevity�
must be evaluated numerically. The intensity of the absorp-
tion is proportional to this transition rate, and the area of the
dots in the lowest panels of Figs. 1�a�–1�c� scales with this
quantity. In all figures we show the absorption of unpolarized
light �i.e., �� = �e�x+e�y� /�2�. Equation �6� shows that transi-
tions which change the angular-momentum quantum number
by 1 are permitted so long as the valley index remains
unchanged. Where the initial state of a transition is degener-
ate, we take the average of the intensity of all possible pairs
of initial and final states.

In Fig. 1�a� we show the energy spectrum, persistent cur-
rent, and optical absorption for a single electron in the
graphene ring with R /W=10. The lifting of the valley degen-
eracy previously described causes the step in the persistent
current at �=� /�0=0.5. For 0���0.5 the ground state
consists of one electron in the m=− 1

2 , �=−1 state whereas
for 0.5���1 the valley index is �= +1. For ��0, transi-
tions to the lowest-lying states m= + 1

2 , �= +1 and m=− 1
2 ,

�=−1 are not allowed since the optical absorption cannot
mix valleys.

For two noninteracting electrons, the ground state consists
of a pair of electrons with antiparallel spins occupying the
same single-particle states as in the single-electron system
�Fig. 1�b��. The persistent current reflects the similarity be-
tween the ground states of the single particle and N=2 non-
interacting system, and since there are now two electrons, the
persistent current is doubled. The excited states can have
varying degrees of degeneracy. If the quantum number pairs
P= �mP ,�P� and Q= �mQ ,�Q� of the two electrons are identi-
cal then there is only one permitted configuration of the elec-
tron spins: the singlet state. However, if P�Q then there are
four degenerate possibilities: the singlet and three triplet
states.
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When the Coulomb interaction is included �Fig. 1�c��, the
picture changes drastically. To describe the two-particle
states, we introduce the notation M =m1+m2 for the total
angular momentum and T=�1+�2 for the total valley quan-
tum number. The exchange interaction will split the degen-
erate singlet-triplet states when both of the electrons are in
the same valley, i.e., for T= 2. In this case, the energy of
the singlet does not contain any contribution from exchange
and consequently has a rather higher energy than the corre-
sponding triplet. This is exemplified by the �M =0, T=2�
state. The triplet part experiences exchange, and this reduces
its energy sufficiently for it to form the ground state for �
0.3 with ��3.191. At the same flux the singlet state has
��3.205 and therefore has energy too high to be shown in
Fig. 1�c�. On the other hand, the singlet and triplet parts of
the �−1,0� degenerate state are not split by the exchange
interaction.

Because the Coulomb matrix elements depend on the an-
gular momenta of the single-electron states involved, the size
of the energy change will vary between different few-
electron states. This is shown in the vicinity of the crossing
of the lowest three states for �=0. The M = 1 states each
contain two electrons in the same angular-momentum state
�m= 

1
2 �, so their interaction is stronger than the electrons in

the M =0 state which has electrons in different angular-
momentum states. This causes the ground state to become a
degenerate singlet-triplet combination for a small range of
flux.

This intricate interplay of different-sized contributions
from the Coulomb interaction adds significant complexity to
the ground state of the interacting system. In the noninteract-
ing case the ground state is always comprised of a singlet,
but the interaction introduces several additional level cross-
ings which give rise to ranges of flux where the ground state
becomes a triplet or degenerate singlet-triplet state. More-

over, since the energy due to the Coulomb interaction de-
pends on the angular momentum of the state, the size of the
ring will also be an important factor. In Fig. 2�a� we plot the
ground-state energy for R

W =3 �a wide ring� and 25 �a narrow
ring� to illustrate this dependence. The relative depths of the
local minima of the ground-state energy are not alike, and
the nature of the ground state at zero field changes from the
�−1,−2� singlet in a wide ring to the �0,0� singlet-triplet in a
narrow ring. This transition is revealed by the absorption
spectrum, since the crossover to the degenerate ground state
changes the spectrum to two closely spaced low intensity
peaks. In Fig. 2�b�, the difference in energy between �0,0�
and �−1,−2� is plotted as a function of R

W for a ring with R
=100 nm. The crossover for the ground state occurs at ap-
proximately R

W =7, which is independent of the value of R.
For three noninteracting electrons in the ring, the ground

state is composed of spin and valley states with minimal

1.57

1.58

1.59

-0.5

0

0.5

0 0.2 0.4 0.6 0.8 10

2

4

3.141

3.142

3.143

3.144

-0.5

0

0.5

0 0.2 0.4 0.6 0.8 10

2

4

3.191

3.192

3.193

3.194

-0.5

0

0.5

0 0.2 0.4 0.6 0.8 10

2

4

(−1,+2)(−1,−2) (−1,0)

(0,+2)(0,0)

Pe
rs

is
te

nt
cu

rr
en

t
E

ne
rg

y

(0,+2) (−2,−2)(0,0)

(−1,−2) (−1,+2)(−1,0)

E
ne

rg
y

Singlet

Triplet

Singlet/Triplet

h
h̄vF
W

i

h
evF W

2π2a2

i

h
h̄vF
W

×10−3
i

(a) (b) (c) N = 2, CoulombSingle electron N = 2, no interaction

[ 1
2
,−] [ 1

2
,+]

εg = 2.5
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single electron, �b� two noninteracting electrons, and �c� two electrons with the Coulomb interaction included. States in the two-electron plots
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FIG. 2. The effect of the ring width on the ground-state energy.
�a� The R
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hand axis. �b� The energy difference between lowest singlet ��S�
and degenerate singlet-triplet ��D� states at � /�0=0. �c� The ge-
ometry of the ring.
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polarization �i.e., T= 1� �Fig. 3�. When the interaction is
added, the contribution from exchange is largest for T= 3
states so the low-energy spectrum becomes much more com-
pact, just as in the N=2 case. Qualitatively, the effect of the

interaction is the same as previously, so the changing nature
of the ground state again demonstrates the complexity due to
the absence of the valley degeneracy. However, because
there are more possible combinations of states, the persistent
current and absorption spectrum are correspondingly more
complex in their structure. In particular it is not possible to
have T=0 so the exchange energy is always finite. However,
its contribution is larger for T= 3 states than for T= 1
states. It is also the case that the width of the ring �and hence
the relative strength of the interaction� will affect the detail
of the ground state.

To summarize, we have studied the effect of the electron-
electron interaction on measurable quantities in a graphene
quantum ring. We find that the interplay of the interaction
and the total valley quantum number allow for an intricate
manifestation of the breaking of valley degeneracy in this
geometry. The change of the interacting ground state be-
tween singlet, triplet, and degenerate singlet-triplet natures
reveals the sensitivity of the exchange contribution to the
total valley index. These changes in the ground state are
manifested in the fractional nature of the AB oscillations in
the persistent current, and in the steps and intensity changes
in the absorption spectrum as the flux is varied.
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